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Abstract

Sandia National Laboratories has been studying calendar and pulse discharge life of prototype high-power lithium-ion cells as part of the

Advanced Technology Development (ATD) Program. One of the goals of ATD is to establish validated accelerated life test protocols for

lithium-ion cells in the hybrid electric vehicle application. In order to accomplish this, aging experiments have been conducted on 18650-size

cells containing a chemistry representative of these high-power designs. Loss of power and capacity are accompanied by increasing interfacial

impedance at the cathode. These relationships are consistent within a given state-of-charge (SOC) over the range of storage temperatures and

times. Inductive models have been used to construct detailed descriptions of the relationships between power fade and aging time and to relate

power fade, capacity loss and impedance rise. These models can interpolate among the different experimental conditions and can also describe

the error surface when fitting life prediction models to the data.
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1. Introduction

The Advanced Technology Development (ATD) Program

is sponsored by the US Department of Energy, to support the

development of high-power battery systems for use in hybrid

electric vehicles (HEV). Goals of the ATD Program include

determining causes for power fade in lithium-ion batteries

and predicting HEV battery life, developing analytical tools

that can be used to measure battery degradation and identify

failure mechanisms, identifying causes for intolerance to

thermal abuse and improving battery safety, and reducing

the cost of battery materials and fabrication processes. This

paper discusses the continued development of advanced

computational tools for predicting battery life in a variety

of environments and use profiles [1]. General methods are

desired that can be applied to different sources and types of

vehicle batteries. In the long term, these results will be

correlated with quantitative diagnostic measurements of

degradation mechanisms to validate that mechanisms do

not change at increased levels of acceleration or at longer

times. The mechanistic approach may also offer the possi-

bility of higher sensitivity so that degradation can be

detected earlier in the aging process. However, this report

concentrates on results from an empirical approach that

forces measurable change in cell performance. In particular,

the ability of inductive models to efficiently interpolate and

predict cell performance for conditions that were not tested

and to model error surfaces for cell performance prediction

models were investigated.

2. Experiments and aging results

An 18650-size Li-ion cell is being used by the ATD

program to investigate power fade at various experimental

conditions of temperature, state-of-charge (SOC) and pulse

discharge profile. These cells contain no internal safety

components such as positive temperature coefficient (PTC)

devices that could limit cell performance. Representative

high-power cell chemistry was used, consisting of a MAG-

10 graphite negative electrode, a LiNi0.8Co0.15Al0.05O2 posi-

tive electrode, poly(vinylidine difluoride) binder, and a 1.2 M

LiPF6 in ethyl carbonate/ethyl methyl carbonate (3:7 wt.%

ratio) electrolyte.

Initial experiments have focused on the parameters of

temperature and SOC in a calendar-aging test. The test

profile includes a single daily discharge to track increases

in cell resistance, but otherwise the samples are stored at a

controlled voltage corresponding to the desired SOC.

Reduction of these test data to power fade metrics has been

described in previous publications [2,3]. Experiments were
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carried out at temperatures of 25, 35, 45, or 55 8C and at 60,

80, or 100% SOC in order to force cells to degrade rapidly so

that degradation rates could be determined. Data available

through 24 weeks of aging show that both power capability

and capacity decrease. The experiment plan was designed

for statistical analysis and includes at least three replicates at

each set of conditions. Parameter values cover the expected

range in HEV use, which allows extrapolation of measured

accelerated power fade rates to the nominal use condition

(25 8C and 60% SOC) to be validated. Use of a minimum of

three levels for each of the parameters also enables nonlinear

effects and interactions between the parameters to be

assessed.

3. Correlation of power fade with electrochemical
impedance spectroscopy

In addition to measuring loss of power capability and

capacity after every 4-week aging interval, electrochemi-

cal impedance spectroscopy (EIS) measurements were

also made at two states of charge during each of these

reference performance test (RPT) evaluations. NyQuist

plots of the EIS data show a single major interfacial

impedance loop for these cells after aging as shown in

Fig. 1. There is continual growth in the width of this loop

with time that is most apparent at high temperature. Aging

at 100% SOC also causes greater interfacial impedance.

As can be seen in Fig. 1, all other contributions to the

impedance (e.g. the ohmic impedance or zero crossing

point and the diffusion region at low frequency) remain

relatively constant during aging. The dominant interfacial

EIS component has been assigned to the cathode in this

lithium-ion cell chemistry through use of three-electrode

studies [4]. Since only the interfacial impedance is chan-

ging while power fade is occurring, it was of interest to see

whether there was a consistent correlation with the power

measurements. Fig. 2 shows that there is a correlation

between these two parameters, but that the nature of the

correlation is different for each SOC during aging. There is

a particularly large difference between the 100% SOC

correlation and the 60% SOC correlation. The cause for

this has not been determined at present, but is under

investigation.

4. Artificial neural network modeling approach

Artificial neural networks (ANN) are frameworks for

creating inductive mappings and we use them to model

the input/output relations in lithium-ion electrochemical

cells. The output is a measure of power fade in lithium-

ion cells while cell capacity, aging time, state of charge and

various metrics of cell impedance are used as inputs to the

ANN. The ANN used here is the multivariate linear spline

(MVLS) network which is a generalization of the connec-

tionist normalized linear spline (CNLS) network [5] to

multiple input/output dimensions. The MVLS network,

written in Matlab and developed at Sandia is well suited

to this application due to its ability to model complex,

nonlinear relationships. The following is a brief description

of the MVLS network; a more detailed explanation can

found in [6].

To commence, we let x be an n-dimensional input vector

to the system being modeled, and let z ¼ gðxÞ be its corre-

sponding m-dimensional output vector. We assume that the

function g(x) is deterministic but that its form and para-

meters are unknown. We can approximate the mapping from

x to z in a region of the input/output space using the linear

form:

z ffi y ¼ Aðx � cÞ (1)

where y is an approximation to z, c a vector with the same

dimension as x in the vicinity of which the approximation is
Fig. 1. Li-ion cell impedance data at 100% SOC after aging at 100% SOC,

55 8C.

Fig. 2. Correlation of Li-ion cell power capability with interfacial

impedance (filled markers represent aging at 100% SOC and unfilled

markers represent aging at 60% SOC).
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made, and A a matrix of constants. This approximation

needs to be optimized using least squares or weighted least

squares and is accurate in the vicinity of the data used to

develop it as long as the behavior of the mapping in the

neighborhood is truly linear. The vector c is the ‘‘center’’ of

the local linear approximation. We can develop similar

approximations in other neighborhoods of the input vector

space. Having developed local linear approximations of the

x to z mapping, we can now combine the local approxima-

tions to create an approximate, global map. The approxima-

tion takes an input vector x0 and maps into y0, an

approximation to g(x0). To accomplish this, we superimpose

several of the linear approximations in a series. We weight

each component in the series according to its distance from

the input vector x0. Local linear models that are near x0 are

weighted heavily, whereas those that are further away are

weighted less. The series is:

X

j

y0wj ¼
X

j

Ajðx0 � cjÞwj (2)

where the wj are the weights attached to the local linear

models. The output vector y0 on the left side is independent

of the index j, so it can be removed from the sum, and the

equation can be simplified to:

y0 ¼
P

jAjðx0 � cjÞwjP
jwj

(3)

This is the parametric form of the MVLS network and we

choose the form of the multivariate Gaussian probability

density function (also known as a radial basis function) for

the weighting expression. The MVLS network is used in the

feed forward operation by specifying the input vector x0,

evaluating the weights wj, substituting the weights and input

vector into Eq. (3), and evaluating the output y0. This output

should present an interpolation among the training outputs

that corresponds to the input as an interpolation among the

training inputs.

5. Experimental/numerical examples

Several numerical examples of the use of these tools to

predict power fade of lithium-ion cells are presented in this

section. We have trained different ANNs to simulate the

input/output characteristics of some lithium-ion cell mea-

sures of behavior. The first case looks at the relationship

between aging time, SOC and a metric of the power fade

measured at 25 8C. Aging time is represented by the RPT

number, which is defined as the periodic evaluation of cell

performance at 4-week intervals during aging. Fig. 3 shows

the ANN map of these variables for cells aged at 55 8C. The

dots represent the experimental data and the surface was

calculated using the ANN fit to this data. Interpolation and

very limited extrapolation were done. The ANN clearly

captures the trend of the data, which indicates a decrease

in power capability as aging occurs, and at higher states of

charge.

In a second example, given the impedance measurement

for a cell and its SOC during aging, we seek to predict a

metric of its power fade. The MVLS net was trained using

exemplars of two inputs—SOC and the total cell impedance

measured at 100% SOC. Fig. 4 shows the surface generated

by the trained MVLS network. Training data are also plotted

as circles. The truncation in the ANN approximation indi-

cates the end of the space where training data existed;

therefore, only interpolation was performed. One potential

use of this surface is to establish power degradation for states

of charge not originally tested.

The final example is to use the ANN as a tool to validate

an existing power fade model and to determine the limits of

the space in which it is applicable with reasonable accuracy.

A related use could be choosing the best model to represent a

set of data from among several alternatives. For this exam-

ple, we assume that a model, describing a particular cell

behavior, exists (i.e. an Arrhenius-type model, an ANN

model, etc.). Using experimental data, we can calculate

the model prediction error, use an ANN to model this error,

and develop an error prediction surface. This surface is

Fig. 3. ANN map of aging time (RPT#), SOC and a metric of power fade.

Fig. 4. ANN approximation of total cell impedance, SOC and power.
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shown in Fig. 5. Using this plot, one could establish the

limits of the applicability of the model by defining a level of

accuracy (i.e. how much error is acceptable).

Our intent is to use this type of approach for cell life

predictions under conditions of temperature and SOC that

are within the range of experimental data. The model will

also be capable of predicting cell performance at various

stages of life under different conditions. These data reduc-

tion tools will continue to be applied to expand complex

phenomena into separate components and to determine and

interpret complex behavior mechanisms.

6. Summary

Aging experiments are being conducted on Li-ion cells as

part of the ATD program. Power capability, capacity, and

EIS measurements have been collected at 4-week intervals

in order to develop a method to predict high-power battery

life in HEV applications. Increasing interfacial impedance

has been observed, which is correlated with decreasing cell

power capability in a consistent way for each SOC tested.

Inductive models of power fade have been shown to be

capable of accurately representing power capability over the

range of input parameters tested. These ANN models pro-

vide a capability to predict power fade at conditions that

have not been tested, but that are within the range of the

experimental parameters. It has also been shown that it is

possible to use ANNs to describe and compare the prediction

error surfaces for alternative life prediction models that

could be applied to the aging data.
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